pH = log 1/[H+] = - log [H+]

Sangue arterioso pH = 7.4Sangue venoso pH = 7.35pH inferiori = acidosi (limite pH = inizio 7,36- max 6.8) pH superiori = alcalosi (limite pH inizio 7,44- max 7.8) pH intracellulare = 6 - 7.4

pH urina 4.5 - 8

Valori normali di concentrazione degli ioni H+ nel sangue e nelle cellule della mucosa dello stomaco

Sangue

- 0,00004 mEq/L = 40 nEq/L
- pH= log 1/40 nEq
- pH = $-\log 0.000000040 Eq/L = 7.4$

Stomaco pH = -log 0,16 Eq/L = 0,8

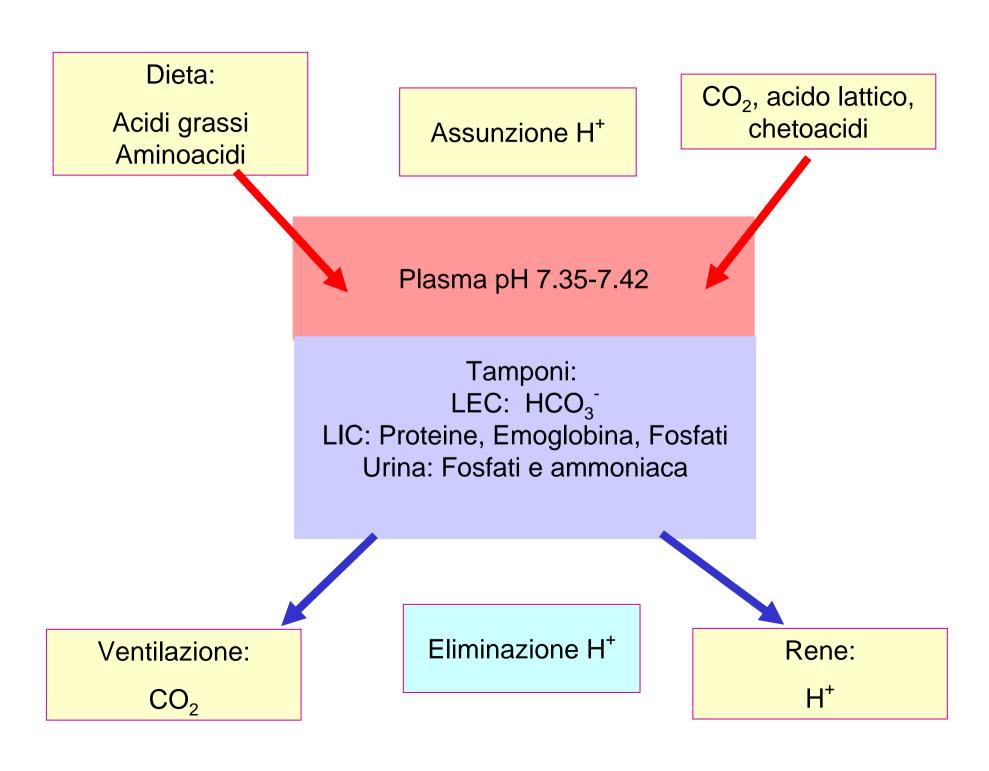
Produzione H+ nell'organismo 40 - 80 mmol/dì

1) <u>CO2</u>

$$CO_2 + H_2O \xrightarrow{\bullet} H_2CO_3 \xrightarrow{\bullet} H^+ + HCO_3^-$$

Non costituisce guadagno di H^+ perché CO_2 è volatile

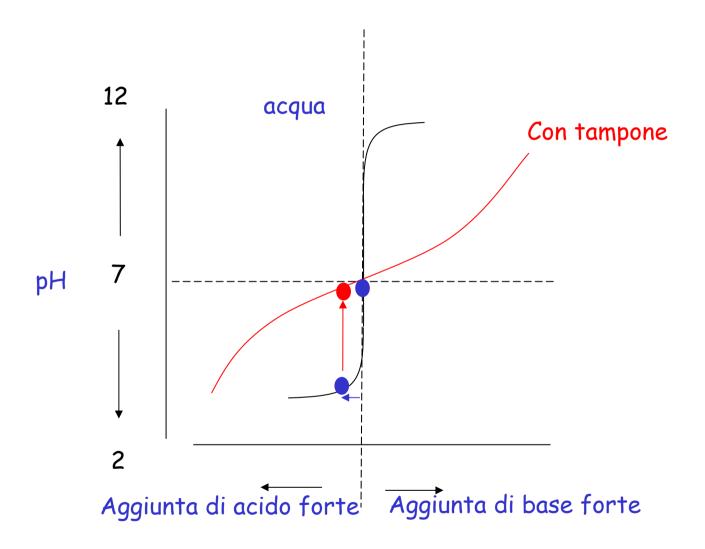
2) <u>Acidi fissi (0.2%):</u>


- Acido solforico (metabolismo proteico: metionina, cisteina, cistina)
- Acido fosforico (metabolismo fosfolipidi)
- Acido cloridrico (conversione Cloruro di ammonio in Urea)
- Acido lattico
- Corpi chetonici (Acido acetoacetico, β-idrossibutirrico, acetone)

Consumo H+

Reazioni metaboliche

Ossidazione anioni (citrato, lattato, acetato)


Bilancio adulto in dieta mista + 1 mEq/Kg/dì di H⁺

Sistemi di regolazione del pH

- 1. Sistemi tampone nei liquidi corporei (si combinano istantaneamente con acidi e basi per impedire variazioni consistenti del pH) risposta immediata
- 2. Centro respiratorio (regola in pochi minuti la ventilazione e quindi l'eliminazione di CO₂) risposta rapida
- 3. Rene (elimina dal corpo gli acidi o le basi in eccesso) risposta lenta

Azione dei tamponi sul pH

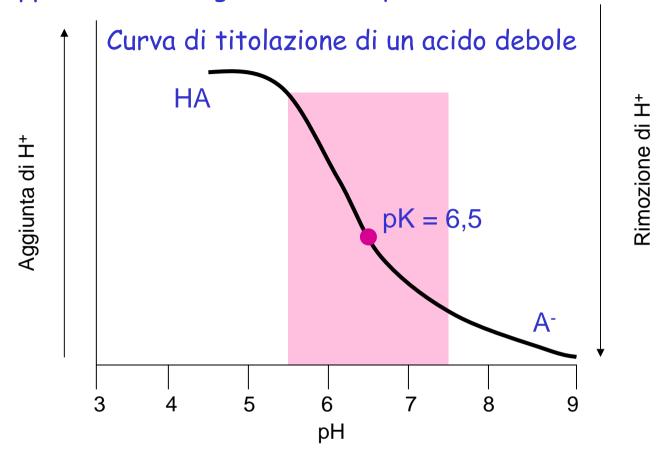
 $pH = pK + log \frac{[A^-]}{[HA]}$

Potere tampone: Quantità (moli) di acido o base che occorre aggiungere ad 11 di soluzione tampone per variare il pH di 1 unità

Equazione di Henderson-Hasselbalck permette di calcolare il pH di una soluzione tampone ed è descritta dalla cinetica della reazione:

HA
$$\stackrel{K1}{\longleftarrow}$$
 H⁺ + A⁻ All'equilibrio K₁ = K₂

Per la Legge dell'azione delle masse: $K_1[HA] = K_2[H^+][A^-]$


$$\frac{\mathbf{K}_{1}}{\mathbf{K}_{2}} = \frac{\mathbf{[H^{+}] [A^{-}]}}{\mathbf{[HA]}} \qquad \frac{\mathbf{K}_{1}}{\mathbf{K}_{2}} = \mathbf{K} \text{ costante di equilibrio}$$

$$\mathbf{K} = \frac{\mathbf{[H^{+}] [A^{-}]}}{\mathbf{[HA]}} \qquad \mathbf{[H^{+}] = K} \frac{\mathbf{[HA]}}{\mathbf{[A^{-}]}}$$

$$-\log [H^+] = -\log K - \log \frac{[HA]}{[A^-]}$$

$$pH = pK + log \frac{[A^{-}]}{[HA]}$$

Rappresentazione grafica dell'equazione di Henderson-Hasselbalck

Quando il valore del pH è uguale al valore del pK, le concentrazioni di HA ed Asono uguali. Il sistema tampone è più efficiente nella parte centrale della curva (entro oscillazioni di 1 unità di pH in più o in meno del valore di pK)

Il tampone è efficace se:

- · il suo pK è vicino al pH desiderato
- · è presente in elevate concentrazioni

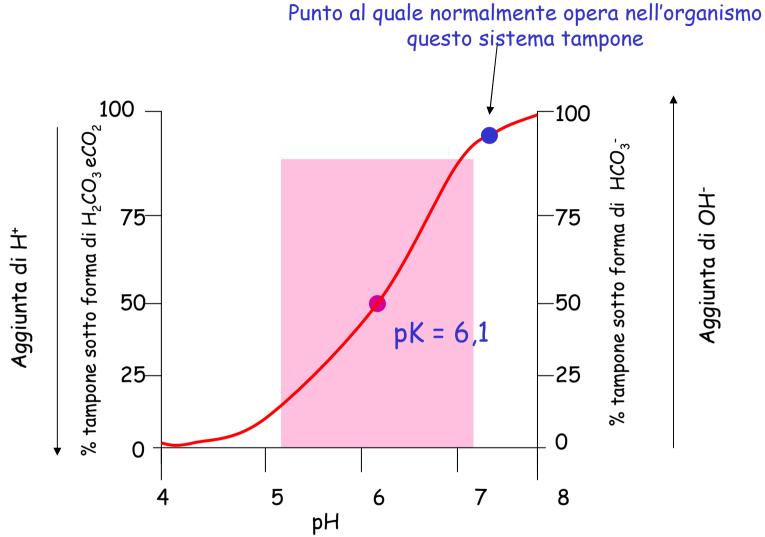
Sistema tampone del Bicarbonato

E' formato dalla coppia tampone HCO_3^-/H_2CO_3

Quando viene aggiunto un acido forte come HCl, l'H $^{+}$ liberato viene tamponato da HCO $_{3}$ -con formazione di H $_{2}$ CO $_{3}$ secondo la reazione:

$$H^{+} + HCO_{3}^{-} \longrightarrow H_{2}CO_{3} \longrightarrow H_{2}O + CO_{2}$$

Quando viene aggiunta una base forte come NaOH, l'OH - liberato si combina con H_2CO_3 formando HCO_3 . La concentrazione di H_2CO_3 diminuisce e la reazione è spostata verso sinistra.


Secondo l'equazione di Henderson-Hasselbalck:

pH = pK + log [HCO_3^-]/[H_2CO_3] dove H_2CO_3 può essere sostituito da CO_2 (40 mmHg*0,03)

$$pH = pK + log [HCO_{3}^{-}]/1.2mmol/l$$
 $pK = 6.1$

$$pH = 6.1 + log 24mmol/l / 1.2mmol/l pH = 6.1 + log 20 (1.3) = 7.4$$

L'aumento della concentrazione di HCO_3^- determina aumento del pH, spostando l'equilibrio acido-base verso l'alcalosi, mentre un aumento di CO_2 abbassa il pH spostando l'equilibrio acido-base verso l'acidosi

Curva di titolazione del sistema bicarbonato

Il sistema tampone non sembra essere particolarmente efficiente perché pK è 6.1 e il pH è 7.4.

Il sistema tampone Bicarbonato è il sistema tampone extracellulare più potente dell'organismo, perché rappresenta un sistema aperto nel quale CO_2 è controllata dalla respirazione e HCO_3 - dal rene.

$$pH = 6.1 + log 24mmol/l / 1.2mmol/l = 7.4$$

L'aggiunta di 5 mmol HCl in un sistema chiuso:

$$pH = 6.1 + log (24 - 5)/(1.2 + 5)$$

$$pH = 6.1 + log 19/6.5 = 6.6$$

L'aggiunta di 5 mmol HCl in un sistema aperto, in cui CO_2 è costantemente controllata:

$$pH = 6.1 + log 19/1.2 = 7.3$$

Sistema tampone del Fosfato

 $HPO_4^2 - /H_2PO_4 - pK = 6.8$

E' meno efficace perché:

- meno concentrato (1-2 mEq/l)
- · la forma acida non può essere eliminata come la CO2

E' comunque essenziale per la regolazione del pH del liquido extracellulare e del liquido tubulare renale perché:

- · il fosfato è enormemente concentrato nei tubuli renali
- · il liquido tubulare ha un pH più vicino al pK del tampone

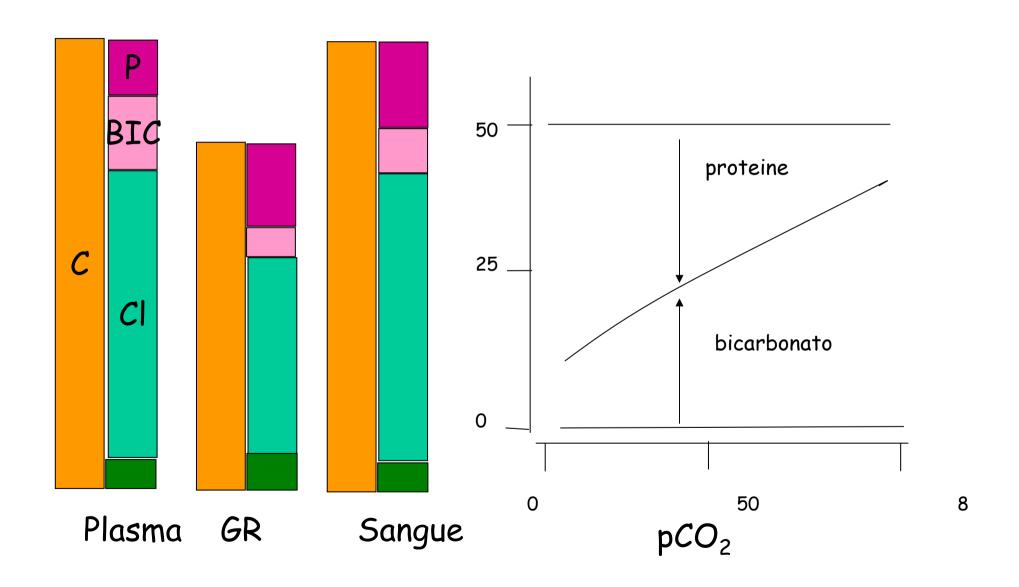
Sistema tampone delle Proteine

Le proteine sono i sistemi tampone più abbondanti dell'organismo. La loro capacità tampone è legata all'esistenza di gruppi imidazolici dell'istidina (pK = 6.4-7.0) e α -aminici (pK = 7.4-7.3). Nell'emoglobina ridotta i gruppi imidazolici hanno un pk più elevato: maggiore potere tampone.

Nei globuli rossi l'Emoglobina ha una importante funzione tampone.

Tamponi intracellulari (principio isoidrico)

Il pH intracellulare è leggermente inferiore a quello del LEC, ma segue, anche se lentamente, le sue variazioni, perché CO_2 diffonde nelle cellule e H^+ entra con anioni organici e in scambio con il K^+ .


I sistemi tampone intracellulari contribuiscono ad impedire variazioni del pH del LEC, anche se agiscono lentamente e sono rappresentati dalle proteine e dai fosfati inorganici (ATP, ADP, AMP Glucosio-1 monofosfato e 2,3-DPG).

Basi tampone totali:

Somma di tutti gli anioni (essenzialmente proteinati e bicarbonati) con effetto tampone

- La concentrazione totale delle basi tampone nel sangue ammonta a circa 48 mmol/l e non si modifica al variare della p CO_2 (se p CO_2 aumenta, al corrispondente aumento di HCO_3^- , segue una diminuzione dei proteinati che tamponano l' H^+)
- · La concentrazione totale delle basi tampone è un buon indice per il riconoscimento delle alterazioni dell'equilibrio acido-base dovute ad aumento o diminuzione degli acidi fissi nel sangue
- Un aumento della concentrazione delle basi tampone, rispetto al normale, viene definito come eccesso di basi (BE). In caso di riduzione si parla di BE negativo

Basi tampone totali

La regolazione respiratoria dell'equilibrio acido-base

La seconda linea di difesa dalle alterazioni dell'equilibrio acido-base è costituita dal controllo polmonare della concentrazione di CO₂

Aumento di pCO_2 significa diminuzione del pH, diminuzione di pCO_2 aumento del pH.

Regolando la pCO_2 attraverso variazioni della ventilazione, i polmoni possono regolare il pH:

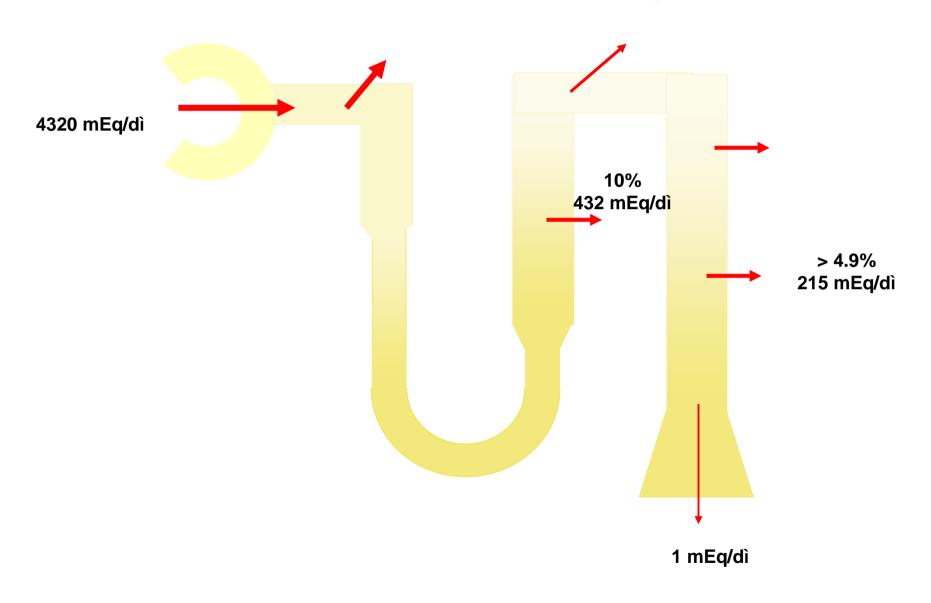
- Se il pH diminuisce la ventilazione è stimolata e la conseguente riduzione di pCO₂ riporta il pH vicino ai valori normali
- \cdot Se il pH aumenta il centro respiratorio viene depresso, la ventilazione si riduce e il conseguente aumento di p CO_2 riporta il pH vicino ai valori normali

I reni mantengono l'equilibrio acido-base in condizioni normali attraverso:

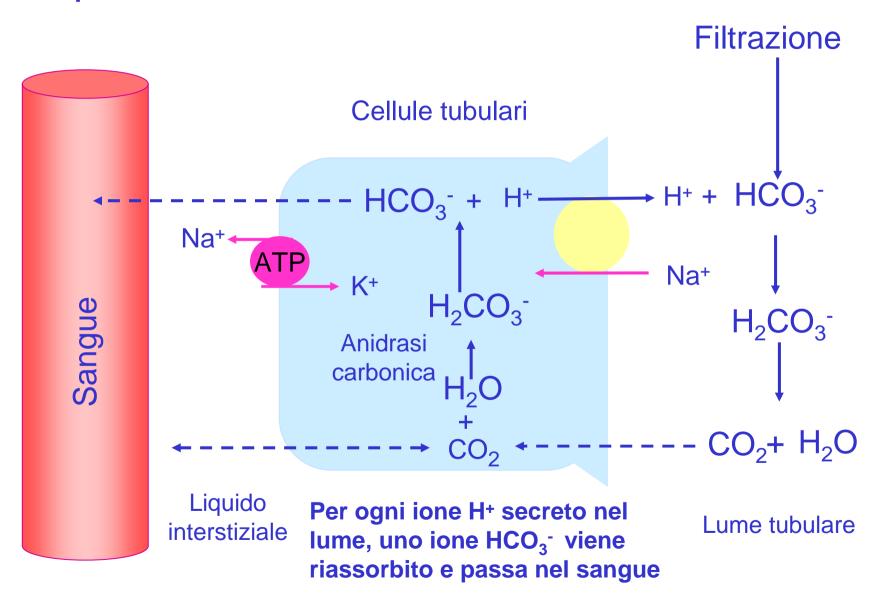
- Riassorbimento di quasi tutto l' HCO_3^- filtrato (4320 mEq/dì)
- Secrezione di una quantità di ioni H⁺ (4400 mEq/dì) equivalente a quella prodotta

I reni ripristinano l'equilibrio acido-base in condizioni di alterazione attraverso:

- Riassorbimento di tutto l' HCO_3^- filtrato (acidosi) o di quantità minori di HCO_3^- filtrato (alcalosi)
- Secrezione di quantità maggiori (acidosi) o minori (alcalosi) di H⁺
- · Produzione di nuovi HCO₃ (acidosi)

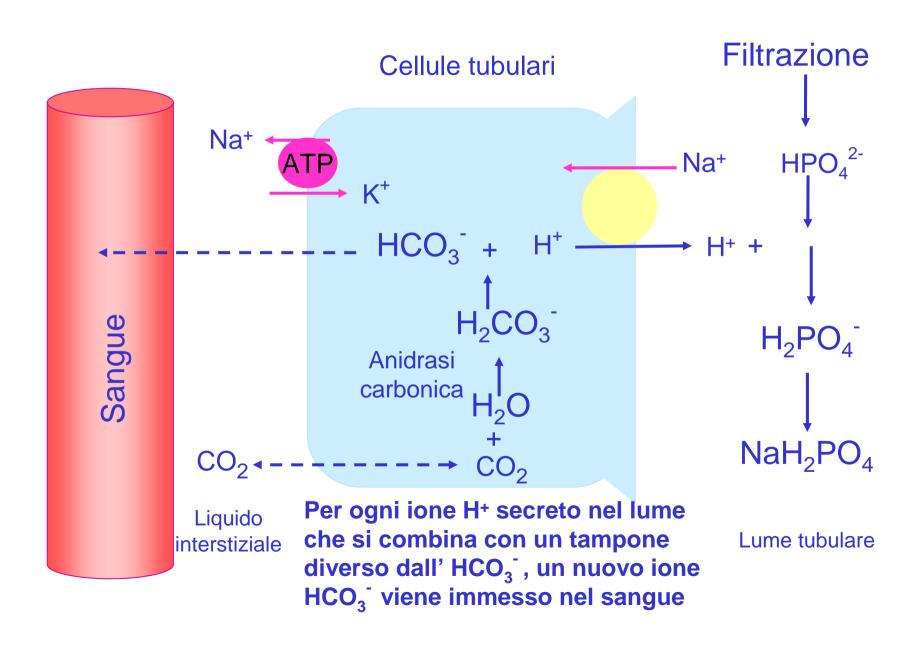

In condizioni normali la velocità di secrezione tubulare degli ioni H^{+} è di circa 4400 mEq/dì (4320 mEq/dì di HCO_{3}^{-} sono presenti nel tubulo)

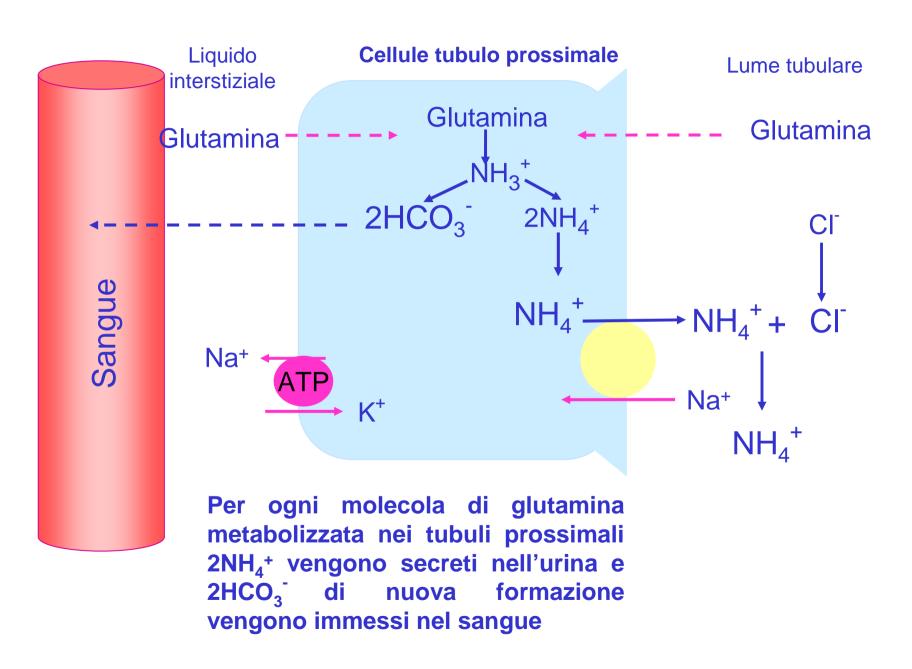
Gli H⁺ in eccesso (80 mEq/dì) vengono escreti con l'urina in combinazione con altri tamponi urinari. Infatti poiché il pH dell'urina non può scendere sotto 4.5 (0.03 mEq/l), solo una piccola parte degli H⁺ eccedenti può essere escreta in forma ionizzata. Se gli 80 mEq/dì di H⁺ in eccesso fossero eliminati in forma ionizzata, sarebbe necessaria l'escrezione di 2667 litri/dì di urina


L'escrezione nell'urina di abbondanti quantitativi di ioni H⁺ si ottiene grazie alla presenza di tamponi urinari (sistema del fosfato e sistema dell'ammoniaca)

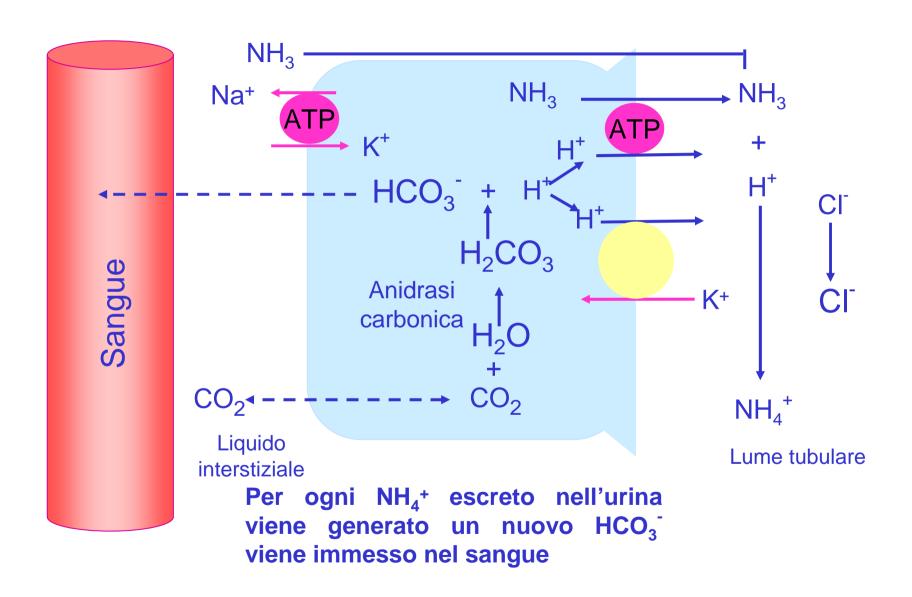
Il riassorbimento degli HCO₃- filtrati avviene grazie alla secrezione di ioni H⁺

Riassorbimento degli HCO₃-


Modalità di screzione di H⁺e riassorbimento di HCO₃⁻ nel tubulo prossimale


- Quando si ha un eccesso di HCO_3^- rispetto ad H^+ nell'urina (alcalosi metabolica) gli HCO_3^- in eccesso non possono essere riassorbiti e vengono escreti (compensazione dell'alcalosi)
- Quando si ha un eccesso di H^+ rispetto ad HCO_3^- (acidosi), HCO_3^- viene completamente riassorbito e gli H^+ in eccesso passano nell'urina, dove sono tamponati da fosfato ed ammoniaca ed escreti in forma di sali (compensazione dell'acidosi)

- Escrezione acida renale pH urinario max 4,5 per cui l'H+ libero non supera i 30 micromol/l
- · L'H+ per essere escreto deve essere tamponato:
- Sistema NH₃/NH₄ (60%), non titolabile, perchè oltre pH 7 resta legato come NH₄. A livello renale la glutaminasi è attivata dall'acidosi ed inibita dall'alcalosi. Se la secrezione di NH₄ continuasse in alcalosi poco NH₃ verrebbe escreto (tossicità per il SNC)
- Ruolo del Fegato: Acidosi: inibizione glutaminasi epatica e si forma glutamina al posto dell'urea: la glutamina viene utilizzata dalla glutaminasi renale per eliminare H+
- Alcalosi: attivazione glutaminasi epatica, si forma urea e il rene elimina urea e non H+
- Sistema HPO_4^2 -/ HPO_4 -(30%). In condizioni normali la maggior parte del fosfato filtrato è riassorbita, solo 30-40 mEq/dì sono utilizzabili come tampone urinario

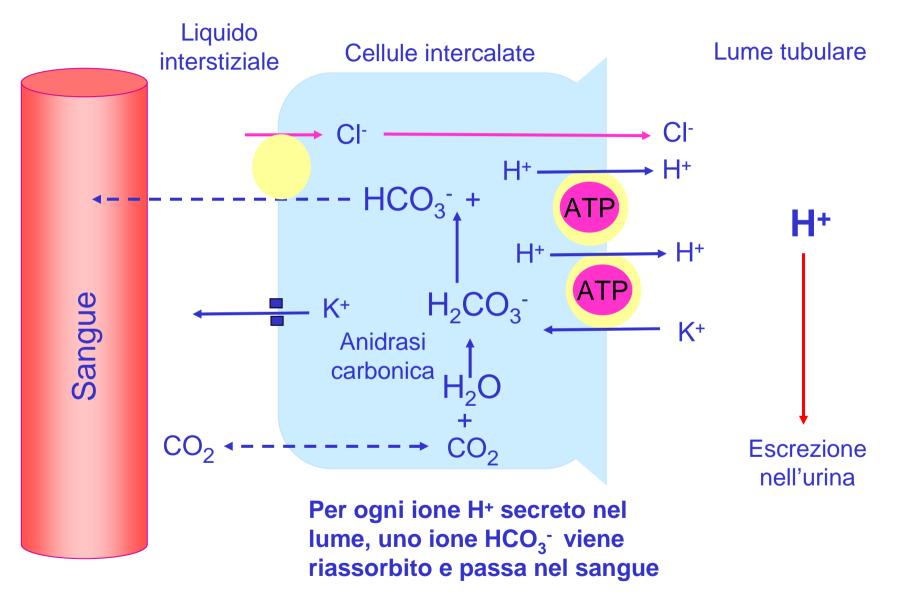

Il sistema tampone del fosfato: pK = 6.8

Escrezione NH₃ nel tubulo prossimale

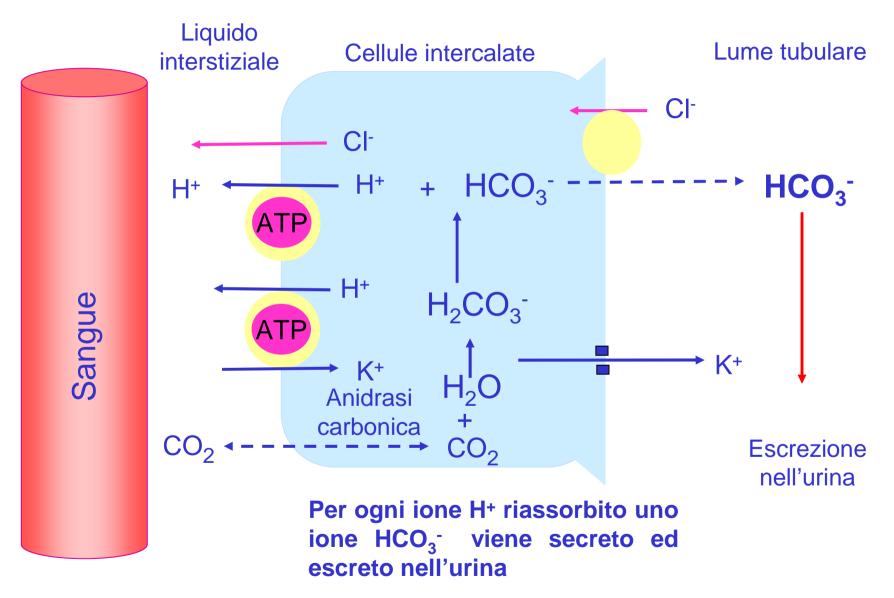
Escrezione NH₃ nei tubuli collettori

Acido netto escreto

L'escrezione di HCO_3^- ($U_{HCO3_-} \times V$) indica la rapidità con cui i reni rimuovono HCO_3^- dal sangue.


La quantità di HCO_3^- di nuova formazione è uguale alla quantità di H^+ secreti nel tubulo ed associati a tamponi diversi da HCO_3^- (quantità di NH_4^+ escreto + acidità titolabile, valutata con NaOH fino a pH 7.4)

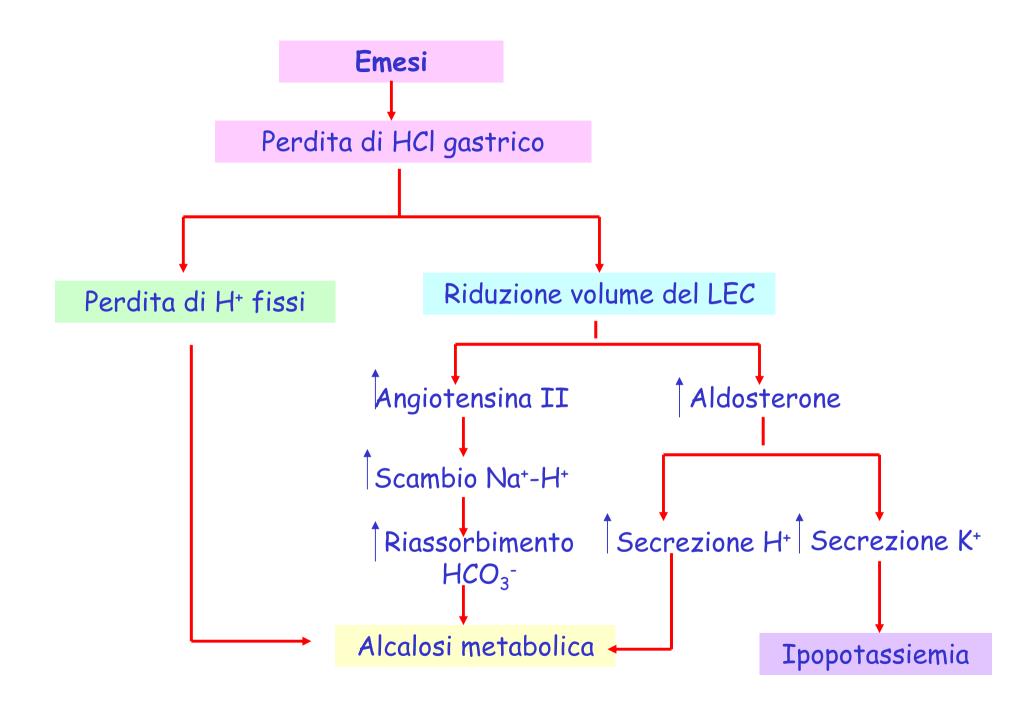
Acido netto escreto =


NH₄⁺ escreto + Acido titolabile urinario - HCO₃⁻ escreto

Ruolo delle cellule intercalate del nefrone distale nell'acidosi e nell'alcalosi

Secrezione di H⁺ (5%) a livello delle cellule intercalate di tipo A in caso di acidosi

Riassorbimento di H⁺ a livello delle cellule intercalate di tipo B in caso di alcalosi


Ruolo delle cellule intercalate del nefrone distale nell'acidosi e nell'alcalosi

- In caso di acidosi le cellule intercalate di tipo A secernono H^+ e riassorbono HCO_3^- (pompa $ATPasi- H^+$ e pompa $ATPasi- H^+/K^+$ membrana apicale)
- In caso di alcalosi le cellule intercalate di tipo B riassorbono H^+ ed eliminano HCO_3^- (pompa ATPasi- H^+/K^+ membrana baso-laterale)

La pompa ATPasi- H⁺/K⁺ rappresenta il punto di contatto tra H⁺e K⁺ che può creare alterazioni nella kaliemia parallele a quelle dell'equilibrio acido-base.

- Acidosi associata ad iperkaliemia
- Alcalosi associata ad ipokaliemia

- Gastrointestinale secrezione gastrica e marea alcalina, e secrezione pancreatica alcalina
- Fegato (effetto sulla glutaminasi)
- Osso (acidosi solubilizza i sali di carbonato e fosfato alcalino, mentre l'alcalosi mineralizza; la mineralizzazione ossea cede H+ al sangue e la demineralizzazione consuma H+. Somministrazioni di CaCl2 possono indurre acidosi)
- Sali. Eccessi di Sali non consentono il recupero di HCO3- per cui acidosi (in mancanza di Sali si verifica l'opposto)
- Kaliemia: Iperkaliemia depolarizza la cellula: ciò riduce l'efflusso di HCO3- fuori della cellula con conseguente alcalosi cellulare e acidosi extarcellulare indotta dal blocco del Na/H e ridotta escrezione renale di H+
- · LEC

In base all'equazione di Henderson-Hasselbalch

pH = pK+
$$log \frac{[HCO_3]}{[CO_2]}$$

Si ha acidosi quando il rapporto HCO_3^-/CO_2 diminuisce causando una diminuzione del pH.

Se il rapporto diminuisce per perdita di HCO_3^- l'acidosi è definita metabolica (non-respiratoria), se per aumento di CO_2 l'acidosi è definita respiratoria

Si ha alcalosi quando il rapporto HCO_3^-/CO_2 aumenta causando un aumento del pH.

Se il rapporto aumenta per aumento di HCO_3^- l'alcalosi è definita metabolica (non-respiratoria), se per diminuzioni di CO_2 l'alcalosi è definita respiratoria

- Acidosi
- Distacco (istidina) aa da enzimi: Acidosi inibisce la glicolisi e favorisce al gluconeogenesi (iperglicemia) ed inibisce la sintesi di DNA. Fattori di crescita stimolano le pompeNA/H, aumentano il pH cellulare e favoriscono la proliferazione cellulare.
- Rilascia potassio da parte delle cellule a causa della perdita cellulare di HCO3 e conseguente depolarizzazione cellulare (iperkaliemia)
- Canali
- I canali K si chiudono in acidosi
- In acidosi i mitocondri rilasciano Ca scambiandolo con H, si ha distacco Ca dalle proteine (siti legame) con proteine (ipercalcemia) ed inibizione del Ca muscolare cardiaco
- Cuore
- Diminuzione forza contrazione, dilata i vasi, (caduta della pressione) e riduce la permeabilità delle gap junction (rallenta la velocità di conduzione)
- Aumenta la pressione intracranica (vasodilatazione)

Alcalosi

- Alcalosi stimola glicolisi ed inibisce la gluconeogenesi (ipoglicemia)
- Ipokaliemia (aritmie)
- · K si apre in alcalosi
- · La corrente entrante di Ca aumenta in alcalosi
- si ha legame del Ca alle proteine (siti legame) (ipocalcemia) aumento eccitabilità neuromuscolare
- Vasocostrizione cerebrale e convulsioni

Acidosi metabolica:

$$\uparrow H^{+} \downarrow HCO_{3}^{-} \longrightarrow \uparrow pCO_{2}$$

(H si lega con HCO3 e forma CO2)

Compenso respiratorio: $\int pCO_2 \longrightarrow HCO_3^- \downarrow H^+ \downarrow$

• Iperventilazione (p CO_2 si riduce di 1.2 mmHg per 1 mEq/l di riduzione della [H CO_3^-], risposta limitata dalla conseguente diminuzione di p CO_2 che inibisce la ventilazione)

Compenso renale:

- Maggiore secrezione di H⁺
- · Riassorbimento totale di HCO₃
- Maggiore escrezione di NH_4^+ (formazione nuovo HCO_3^-)

Alcalosi metabolica:

$$\downarrow$$
 H⁺ \uparrow HCO₃ \uparrow \longleftarrow \downarrow pCO₂

Compenso respiratorio:
$$\uparrow pCO_2 \longrightarrow \uparrow H^+ \uparrow HCO_3^-$$

 Ipoventilazione (pCO₂ aumenta di 0.7 mmHg per 1 mEq/l di aumento della [HCO₂])

Compenso renale:

- Minore secrezione di H+
- Minor riassorbimento e maggiore escrezione di HCO₃

Acidosi respiratoria: $pCO_2 \longrightarrow \uparrow HCO_3^- \uparrow H^+$

Fase acuta:

Tamponamento intracellulare

 $[HCO_3^-]$ aumenta di 1 mEq/l per ogni 10 mmHg di incremento della p CO_2

Fase cronica HCO_3 H^+

- Maggiore secrezione H⁺
- Riassorbimento totale HCO₃⁻
- Maggiore escrezione di NH_4^+ (formazione nuovo HCO_3^-)

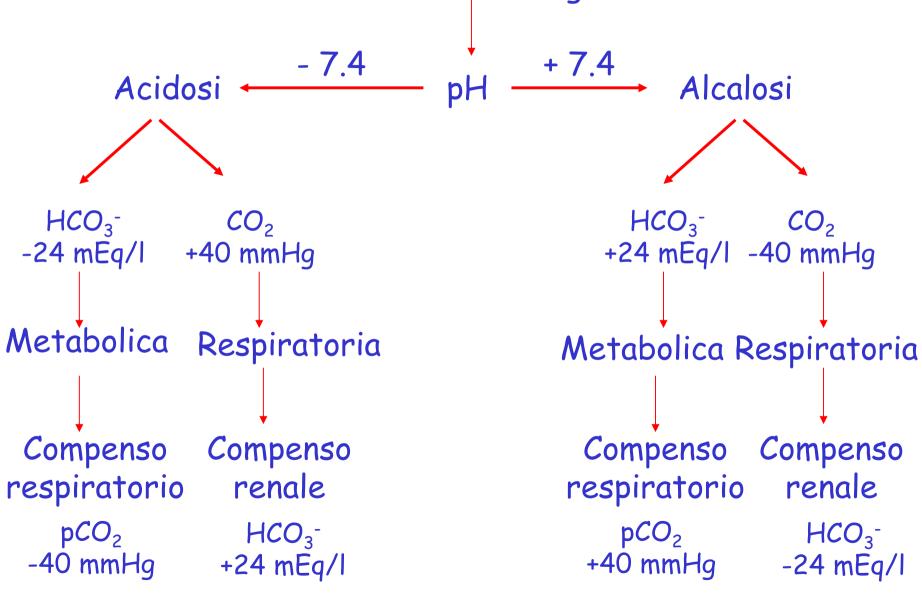
 $[HCO_3^-]$ aumenta di 3.5 mEq/l per ogni 10 mmHg di incremento della p CO_2

Alcalosi respiratoria:

$$\downarrow pCO_2 \longrightarrow \downarrow HCO_3^- \downarrow H^+$$

Fase acuta:

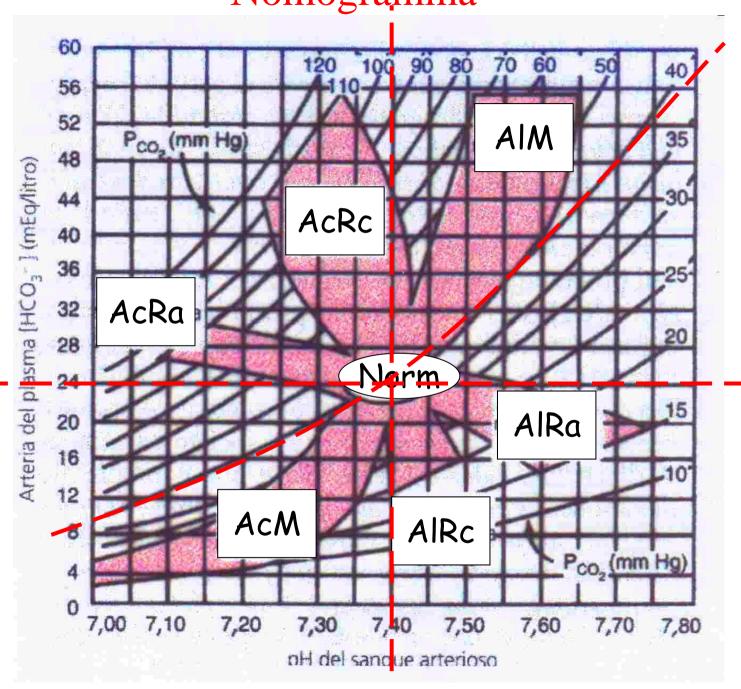
Tamponamento intracellulare


[HCO₃] si riduce di 2 mEq/l per ogni 10 mmHg di riduzione della pCO₂

Fase cronica Compenso renale: $HCO_3^ H^+$

- Minore secrezione H⁺
- · Minore riassorbimento e maggiore escrezione di HCO3
- Minore escrezione di NH₄⁺

 $[HCO_3^-]$ si riduce di 5 mEq/l per ogni 10 mmHg di riduzione della p CO_2


Analisi dei disturbi acido-base semplici Parametri misurati nel sangue arterioso



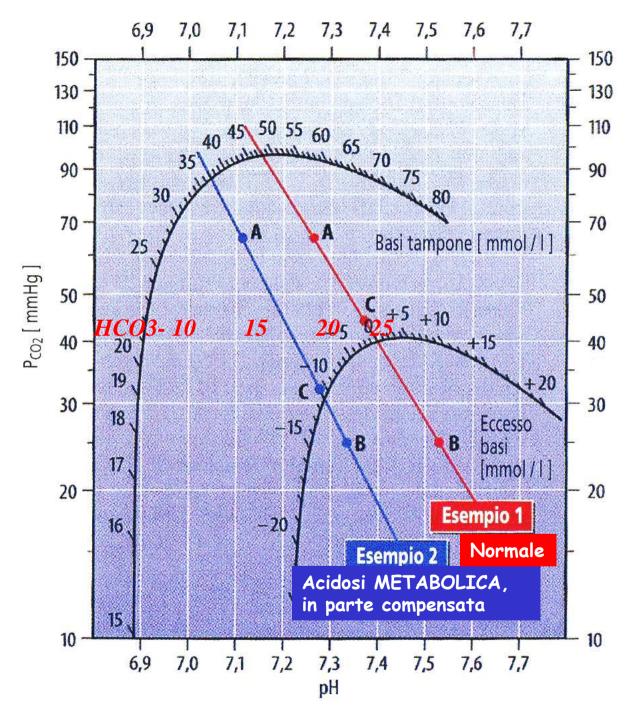
Nomogramma acido-base

Vi sono riportati i valori di pH del sangue arterioso, di HCO_3^- e della pCO_2 che si intersecano secondo l'equazione di Henderson-Hasselbalch.

Nomogramma

Il diagramma riporta come parametro le curve di pCO_2 costante. I punti a sinistra e a destra della banda bianca indicano uno stato di acidosi e di alcalosi

1a: acidosi primaria non respiratoria
1b: compenso respiratorio (iperventilazione, <pCO2).
Si parla di acidosi non respiratoria completamente o parzialmente compensata se il pH torna o no al valore normale

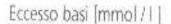

2a: alcalosi primaria non respiratoria
2b: compenso respiratorio (ipoventilazione > pCO2) sempre incompleta

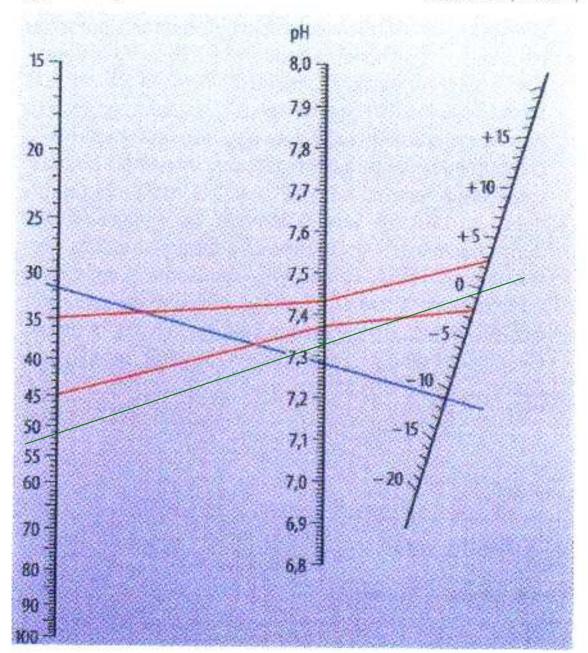
3a: Acidosi respiratoria primaria

3b: compenso renale

4a: alcalosi respiratoria primaria

4b: compenso renale


Il metodo di **Astrup** permette di determinare la pCO_2 e lo stato acido-base del sangue.


Valutazione in campioni di sangue in esame dei valori d pH ottenuti con miscele gassose a pCO_2 note. Il valore di pH e della pCO_2 nota (A e B) vengono riportate sul diagramma e congiunti con una retta

Sulla retta AB si indica il valore di pCO_2 (C), corrispondente al pH reale del sangue in esame.

L'inserzione della retta con le opportune scale del diagramma permette di conoscere la concentrazione totale delle basi tampone, il BE, e HCO3-

Nomogramma per la determinazione del BE dai valori di pCO_2 e di pH misurati.

La retta che unisce i valori di pCO₂ e di pH misurati, taglia la scala a destra in corrispondenza del valore di BE cercato.

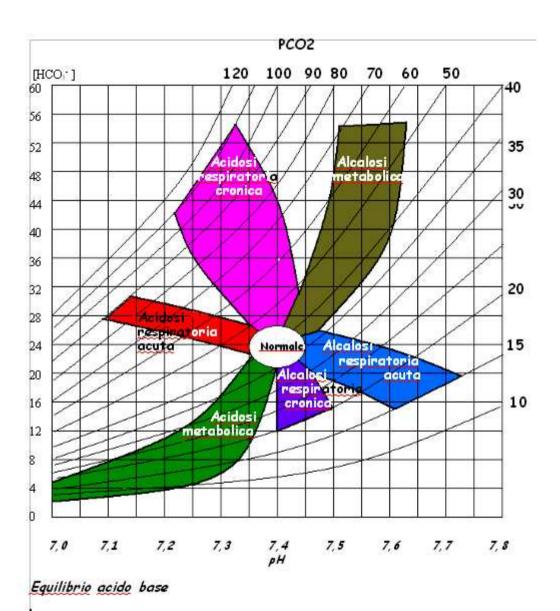
<u>Linee rosse</u> indicano i valori corrispondenti ad un normale stato acido-base

<u>Linea blu</u>: acidosi metabolica parzialmente compensata dalla respirazione

<u>Linea verde</u> acidosi respiratoria scompensata

Sangue arterioso: pH = 7.35, $[HCO_3^-] = 16 \text{ mEq/I}$, $pCO_2 = 30 \text{ mmHg}$

Acidosi metabolica perché pH - 7.4, $[HCO_3^-]$ - 24mEq/I, pCO_2 - 40 mmHg


Analisi risposta compensatoria: Acidosi metabolica compensata perché pCO₂ - 40 mmHg

Diagnosi: Acidosi metabolica semplice, con appropriata risposta compensatoria respiratoria in atto

Sangue arterioso: pH = 6.96, $[HCO_3^-]$ = 12 mEq/l, pCO₂ = 55 mmHg

Acidosi metabolica e respiratoria perché pH - 7.4, $[HCO_3^-]$ - 24mEq/l, pCO_2 +40 mmHg

Diagnosi: Alterazione mista, potrebbe essere presente in paziente con patologia respiratoria cronica (enfisema) e con una forma gastrointestinale acuta (diarrea)

Sangue arterioso: pH = 7.35, $[HCO_3^-] = 16 \text{ mEq/I}$, $pCO_2 = 30 \text{ mmHg}$

Acidosi metabolica perché pH - 7.4, $[HCO_3^-]$ - 24mEq/I, pCO_2 - 40 mmHg

Analisi risposta compensatoria: Acidosi metabolica compensata perché pCO₂ - 40 mmHg

Diagnosi: Acidosi metabolica semplice, con appropriata risposta compensatoria respiratoria in atto

Sangue arterioso: pH = 6.96, $[HCO_3^-]$ = 12 mEq/l, pCO₂ = 55 mmHg

Acidosi metabolica e respiratoria perché pH - 7.4, $[HCO_3^-]$ - 24mEq/l, pCO_2 +40 mmHg

Diagnosi: Alterazione mista, potrebbe essere presente in paziente con patologia respiratoria cronica (enfisema) e con una forma gastrointestinale acuta (diarrea)